Структура этой машины такова, что протон проваливается через полуканал с наружной стороны митохондриальной мембраны, но попасть внутрь митохондрии он не может. Сваливается протон на подставленную ему аминокислоту ротора и эту аминокислоту протонирует, то есть на аминокислоте появляется дополнительный положительный заряд. Затем, когда протонированная аминокислота на вращающемся роторе доедет до следующей половинки канала, ведущей уже внутрь митохондрии (а внутри протонов мало и, кроме того, там протон поджидают отрицательно заряженные ионы), то протон наконец "падает" внутрь и аминокислота освобождается от положительного заряда. Заряды в роторе и статоре расположены таким образом, что протонирование – депротонирование приводит к повороту машины. Таким образом, протон в два приема проваливается внутрь митохондрии, и за счет этого мотор проворачивается.
За объяснение ферментативного механизма, лежащего в основе синтеза АТФ, два исследователя получили Нобелевскую премию: Пол Д. Бойер, США и Джон Э. Уолкер, Великобритания (Нобелевская премия 1997 года).
Было рассказано, как мотор крутится, но не было объяснено, почему синтезируется АТФ. Сейчас подробно мы на этом останавливаться не будем, но вкратце, объяснить это можно следующим образом. Представим АТФ в таком виде: АТФ=АДФ~Ф. Собственно, почему при разрыве этой связи выделяется большое количество энергии? При разрыве образуется отрицательно заряженный фосфат, который гидратируется (покрывается «шубой» из молекул воды). Как вы помните, вода – это диполь (кислород имеет частично отрицательный заряд, а два водорода - положительный). И за счет гидратирования эта энергия и получается. Но если синтез АТФ идет в той среде, где воды нет, т.е. в гидрофобной среде, то макроэргической эта реакция не является. Показано, что когда происходит образование ковалентной связи между фосфатными группами молекул АДФ и Ф, ферменту практически не требуется энергии. Реакции синтеза и гидролиза ATP в каталитическом центре фермента активно идут при отсутствии внешнего источника энергии. Условия, в которых находятся молекулы АДФ и Ф в каталитическом центре, существенно отличаются от условий протекания реакции в водной среде, благодаря чему образование молекулы АТФ в активном центре фермента может происходить энергетически "бесплатно". Энергия "падающих" протонов тратится потом на то, чтобы «выпихнуть» вон АТФ, отцепить его от каталитической субъединицы.
Таким образом, за счет электрохимического потенциала на внутренней мембране митохондрий внутри клетки или митохондрий совершается механическая работа, сопряженная с химическим синтезом.
На рисунке виден срез митохондрии (рис. 12). Внутри содержится матрикс и выросты (складки) – кристы, на которых и расположена АТФ-синтаза. Зачем нужны складки? Чтобы увеличить площадь поверхности. Количество складок внутри митохондрий зависит от того, насколько интенсивно ей приходится работать, сколько энергии нужно клетке. Митохондрии в клетках печени имеют гораздо меньше крист, чем, например, в клетках сердца.
В хлоропластах происходит точно такой же процесс синтеза АТФ, также работает АТФ-синтаза, как и в митохондриях, но источником протонного потенциала является уловленная энергия света. Там тоже есть складки, они называются тилакоидами. Только в хлоропластах все как бы вывернуто наизнанку. То есть протоны за счет энергии света накапливаются снаружи этих образований.
Перейти на страницу:
1 2 3