Статистика

Химическая и радиационная стойкость керамики

На границе газ — жидкость — керамика, например на границе зеркала расплава стекла в стекловаренной печи, растворение керамики идет более интенсивно, чем в глубине. Основной причиной этого явления считают изменение поверхностного натяжения на границе с керамикой, что может усиливать конвекцию. В поверхностные слои расплава могут вытесняться его наиболее агрессивные компоненты (в стекле — щелочи), вызывающие интенсивное растворение.

Многообразие и сложность процессов коррозии не позволяет выработать универсально применимые испытания химической стойкости керамики. Если для определения стойкости кислотоупоров существуют стандартные методы, то для испытания шлакоустойчивости, стеклоустойчивости и металлоустойчивости единых стандартных методов нет.

Для оценки химической стойкости керамики можно использовать изменения структуры, химического состава или свойств, имевшие место в результате коррозии в керамике, в прилегающем к ней слое агрессивного вещества или в агрессивном веществе.

Можно измерять изменение массы керамики, ее геометрических размеров, глубину проникновения (пропитки) агрессивного вещества в керамику. Растворение приводит к уменьшению массы, а окисление, например керметов, и пропитка приводят к увеличению массы. Трудность заключается в том, что процессы растворения и пропитки обычно идут одновременно. Даже удаление налипшего расплава с образца часто является проблемой. Важную информацию о процессе дает изучение микроструктуры керамики и прилегающего к ней слоя агрессивного вещества с помощью оптической и электронной микроскопии. Иногда можно оценить химическую стойкость по изменению свойств агрессивного вещества и керамики, например электрической проводимости, механической прочности, деформационных характеристик и т. д. Избирательность диффузии компонентов агрессивного вещества в керамику, состав диффузионного слоя исследуют с помощью электронного микрозонда, лазерного микрозонда, ожеспектроскопии, а также используя радиоактивные и нерадиоактивные изотопы.

Из сказанного ясно, что наиболее эффективным способом повышения химической стойкости керамики является увеличение ее плотности и повышение чистоты исходных веществ. При этом химическую стойкость надо рассматривать в комплексе с другими ее эксплуатационными физико-химическими свойствами. Повышения плотности керамики часто достигают при использовании специальных добавок. Важно, чтобы эти добавки не слишком понижали химическую стойкость и не обесценивали влияние повышения плотности. Кроме того, повышение плотности может уменьшить термостойкость керамики. Повышение чистоты исходного сырья увеличивает стоимость изделий и требует более высоких температур для их обжига. Иногда возможно использование специальных добавок, перекрывающих систему открытых пор или ухудшающих смачивание их поверхности, или добавок, повышающих химическую стойкость границ зерен. В конечном итоге в расчет надо принимать различные факторы, переводя их на язык экономики, и выбирать оптимальный вариант.

2. Радиационная стойкость керамики.

Развитие космической и лазерной техники, атомной энергетики, ускорителей элементарных частиц, использование радиоактивных изотопов, рентгеновских излучений и т. п. потребовали разработки материалов, в том числе керамических, обладающих радиационной стойкостью.

Перейти на страницу:
1 2 3 4 5 6 7 8 9