Остатки кислот, образованные отнятием гидроксильной группы карбоксила, общего строения R-C= O называют кислотными или ацильными
I
(от латинского слова acidum – кислота) остатками (ацилами). Названия их производят из корня латинского тривиального названия кислоты и окончания – ил. Так, остаток муравьиной кислоты (лат. acidum formicicum) называется формилом, уксусной (acidum aceficum) – ацетилом и т.д. Ниже сопоставлены важнейшие кислоты с формулами и названиями их остатков – ацилов:
Кислота |
Остаток |
Кислота |
Остаток |
H—COOH
муравьиная |
H—CO—
формил |
СH3(CH2)2-COOH
масляная |
СH3(CH2)2-CO—
бутирил |
CH3—COOH
уксусная |
CH3—CO—
ацетил |
(CH3)2CH—COOH
изомасляная |
(CH3)2CH—CO—
изобутирил |
CH3CH2—COOH
пропионовая |
CH3CH2—CO—
пропионил |
CH3(CH2)3-COOH
валериановая |
CH3(CH2)3-CO—
валерил |
Физические свойства предельных одноосновных кислот
Первые три представителя предельных одноосновных кислот – жидкости с острым характерным запахом. Они смешиваются с водой во всех отношениях. Масляная кислота исследующие за ней гомологи – маслянистые, неприятно пахнущие жидкости, хуже растворимые в воде.
Высшие кислоты – твердые, не растворимые в воде вещества. В органических растворителях (спирт, эфир) большинство кислот растворяются хорошо.
Температуры кипения жирных кислот нормального строения закономерно возрастают по мере увеличения числа углеродных атомов. Установлено, что молекулы кислот ассоциированы подобно тому, как ассоциированы молекулы воды или спиртов. Низшие кислоты хорошо перегоняются с водяным паром, поэтому их обычно называют летучими жирными кислотами.
Температуры плавления одноосновных кислот по мере увеличения в их молекулах числа углеродных атомов в общем также возрастают; но при этом наблюдается следующая закономерность: кислоты с нормальной цепью, имеющие четное число углеродных атомов, плавятся обычно при более высокой температуре, чем предыдущий и последующий члены гомологического ряда, имеющие нечетное число углеродных атомов.
Химические свойства
Химические свойства карбоновых кислот определяются свойствами карбоксильной группы и связанного с ней углеводородного радикала, а также их взаимным влиянием. Мы рассмотрим реакции кислот: а) обусловленные подвижностью атома водорода в карбоксиле; б) основанные на способности гидроксильной группы карбоксила замещаться различными атомами или группами и в) реакции за счет связанного с карбоксилом углеводородного остатка.
А) Подвижность водорода карбоксильной группы
(диссоциация карбоновых кислот)
Подобно неорганическим кислотам карбоновые кислоты в водных растворах диссоциируют, образуя катионы водорода и анионы кислот (карбоксилатанионы):
R—COOH ¬® R—COO- + H+
карбоновая к-та анион кислоты
(карбоксилатанион)
Поэтому растворимые в воде карбоновые кислоты окрашивают лакмус в красный цвет, проводят электрический ток, имеют кислый вкус, т.е. являются электролитами и проявляют кислотные свойства.
Склонность карбоновых кислот к диссоциации обусловлена подвижностью водорода гидроксильной группы карбоксила. Мы уже знаем, что водород гидроксильной группы спиртов тоже подвижен и спирты в некоторой степени проявляют кислотные свойства. Однако в спиртах гидроксильная группа связана с насыщенным углеводородным остатком, и под его влиянием подвижность водорода в гидроксиле столь мала, что спирты являются более слабыми кислотами, чем вода (константы диссоциации спиртов ниже 10-16), и практически нейтральны. В кислотах же гидроксил непосредственно связан не с углеводородным остатком, а с карбонильной группой, под влиянием этой группы подвижность водорода в гидроксиле настолько увеличивается, что он способен к отщеплению в виде протона. Константы диссоциации карбоновых кислот значительно больше констант диссоциации спиртов и достигают порядка 10-4-105.
Перейти на страницу:
1 2 3